

Code No. : 13566 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (Mech. Engg.) III-Semester Main & Backlog Examinations, Jan./Feb.-2024

Mechanics of Materials

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	A mild steel rod 16 mm diameter and 2200 mm long is subjected to an axial pull of 27 KN. If $E= 200$ GPa, calculate the elongation of bar.	2	2	1	1
2.	What is the difference between shear strain and Normal strain acting on a body.	2	1	1	1
3.	What is the relationship between Load ' W', Shear force 'F' and Bending moment ' M' in the construction of SF and BM diagrams.	2	1	2	2
4.	Draw the SF and BM diagram for a cantilever beam subjected to point Load "W" at the free end.	2	1	2	1
5.	Calculate the section modulus for a rectangular beam of width 15mm and depth 10 mm.	2	1	3	2
6.	Sketch the shear stress distribution curve for a circular beam of diameter " d " subjected to shear force F.	2	1	3	1
7.	A cast iron beam 40 mm wide and 80 mm deep is simply supported on a span of 1.2 m. The beam carries a point load of 15 KN at the centre. Find the deflection at the centre. Take $E=108000 \text{ N/mm}^2$.	2	2	4	3
8.	What are the maximum slope and maximum deflection values for a simply supported beam subjected to UDL of 'w' N/m for entire length 'l'.	2	1	4	1
9.	What are the Lame's Equations to find the hoops stress, radial pressure and Longitudinal stress in Thick cylinders.	2	1	5	2
10.	A seam less pipe 800 mm diameter contains fluid under a pressure of 4 N/mm^2 . If the pernissible tensile stress be 150 N/mm^2 , find the minimum thickness of pipe.	2	2	5	3
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	A steel rod 100 mm in diameter is subjected to an axial tensile force of 600 KN. If $E= 200$ GPa and poisson's ratio =0.29, determine the percentage change in diameter after the load is applied.	4	3	1	2
b)	Derive an equation to determine volumetric strain of (i) cuboid of length 'l', width 'b', height 'h'. (ii) cylinder of diameter d and height 'h'.	4	2	1	1

b)	A shaft transmits 50 KW at speed of 3600 rpm. Find the diameter of the shaft if the shear stress is not to exceed 75 N/mm^2 .	4	3	5	2
16. a)	Determine the tensile force on steel bar circular cross section, 25 mm diameter, if the strain is equal to 0.75×10^{-3} . Consider E for steel = 2 x 10^{5} MPa.	4	2	1	3
b)	Draw the Shear force and Bending moment diagrams for a cantilever beam of length 10 metres subjected to UDL of 5 N/m for the entire length.	4	2	2	3
17.	Answer any <i>two</i> of the following:				
a)	Derive the equation $\frac{M}{I} = \frac{\sigma_b}{y} = \frac{E}{R}$ in bending stress of beams.	4	3	3	2
b)	A beam 6 m long is simply supported at its end is carrying a point load "w" at its mid span. If the slope at the end is not to exceed 2 degrees, then calculate the deflection at the mid span.	4	4	4	3
c)	Find the torque that a 75 mm diameter wooden shaft can resist if the permissible shear stress is 2 MPa.	4	2	5	2
M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome					
	i) Blooms Taxonomy Level – 1 18%				

i)	Blooms Taxonomy Level – 1	18%
ii)	Blooms Taxonomy Level – 2	34%
iii)	Blooms Taxonomy Level – 3 & 4	48%
