VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD
Accredited by NAAC with $A++$ Grade
B.E. (Mech. Engg.) III-Semester Main \& Backlog Examinations, Jan./Feb.-2024 Mechanics of Materials
Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer all questions from Part-A and any FIVE from Part-B
Part-A ($10 \times 2=20 \mathrm{Marks}$)

Q. No.	Stem of the question	M	L	CO	PO
1.	A mild steel rod 16 mm diameter and 2200 mm long is subjected to an axial pull of 27 KN . If $\mathrm{E}=200 \mathrm{GPa}$, calculate the elongation of bar.	2	2	1	1
2.	What is the difference between shear strain and Normal strain acting on a body.	2	1	1	1
3.	What is the relationship between Load ' W', Shear force 'F' and Bending moment ' M ' in the construction of SF and BM diagrams.	2	1	2	2
4.	Draw the SF and BM diagram for a cantilever beam subjected to point Load "W" at the free end.	2	1	2	1
5.	Calculate the section modulus for a rectangular beam of width 15 mm and depth 10 mm .	2	1	3	2
6.	Sketch the shear stress distribution curve for a circular beam of diameter " d " subjected to shear force F .	2	1	3	1
7.	A cast iron beam 40 mm wide and 80 mm deep is simply supported on a span of 1.2 m . The beam carries a point load of 15 KN at the centre. Find the deflection at the centre. Take $\mathrm{E}=108000 \mathrm{~N} / \mathrm{mm}^{2}$.	2	2	4	3
8.	What are the maximum slope and maximum deflection values for a simply supported beam subjected to UDL of ' w ' N / m for entire length 'l'.	2	1	4	1
9.	What are the Lame's Equations to find the hoops stress, radial pressure and Longitudinal stress in Thick cylinders.	2	1	5	2
10.	A seam less pipe 800 mm diameter contains fluid under a pressure of 4 $\mathrm{N} / \mathrm{mm}^{2}$. If the pernissible tensile stress be $150 \mathrm{~N} / \mathrm{mm}^{2}$, find the minimum thickness of pipe. $\text { Part-B }(5 \times 8=40 \text { Marks })$	2	2	5	3
11. a)	A steel rod 100 mm in diameter is subjected to an axial tensile force of 600 KN . If $\mathrm{E}=200 \mathrm{GPa}$ and poisson's ratio $=0.29$, determine the percentage change in diameter after the load is applicd.	4	3	1	2
b)	Derive an equation to determine volumetric strain of (i) cuboid of length ' 1 ', width ' b ', height ' h '. (ii) cylinder of diameter d and height ' h '.	4	2	1	1

Contd... 2
12. a) Construct the shear force and bending moment diagrams for a simply supported beam subjected to UDL of "w" N / m for entire length " 1 " of the beam.
b) A simply supported beam AB of 4 metres span carries a uniform load of $30 \mathrm{KN} / \mathrm{m}$ over the right hand half of the span as shown in Fig. 1.Construct the SF and BM diagrams.

Fig-1
13. a) A beam of symmetrical section, depth $=400 \mathrm{~mm}, \mathrm{I}=193 \times 10^{6} \mathrm{~mm}^{4}$ is simply supported over a span of 8 metres. What uniformly distributed load ' w ' may it carry if the maximum bending stress is not to exceed 120 MPa . What concentrated load may be carried by the beam at the centre with the same permissible bending stress?
b) A rectangular beam section 150 mm wide $\times 300 \mathrm{~mm}$ depth is subjected to shear force of 20 KN . Determine the average shear stress and maximum shear stress developed in the beam and sketch the shear stress distribution curve.
14. a) A cantilever beam 1.5 metres long is loaded with a point load of 750 kN at the free end and a uniformly distributed load $2000 \mathrm{~N} / \mathrm{m}$ over 0.9 m from the fixed end as shown in Fig-2. If the section is rectangular of width 75 mm and 150 mm deep, Calculate the maximum slope and maximum deflection at the free end. Take $\mathrm{E}=0.11 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Fig-2
b) A cantilever 5 metres long carries a load of 10 KN at the free end and 30 KN at the middle. Calculate the maximum slope and maximum deflection at the free end. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=15650 \mathrm{~cm}^{4}$.
15. a) A mild steel tube 4 metres long, 30 mm internal diameter and 4 mm thick is used as a coloumn with both ends fixed. Find the collapsing load. Take $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
b) A shaft transmits 50 KW at speed of 3600 rpm . Find the diameter of the shaft if the shear stress is not to exceed $75 \mathrm{~N} / \mathrm{mm}^{2}$.
16. a) Determine the tensile force on steel bar circular cross section, 25 mm diameter, if the strain is equal to 0.75×10^{-3}. Consider E for steel $=2 \mathrm{x}$ $10^{5} \mathrm{MPa}$.
b) Draw the Shear force and Bending moment diagrams for a cantilever beam of length 10 metres subjected to UDL of $5 \mathrm{~N} / \mathrm{m}$ for the entire length.
17. Answer any two of the following:
a) Derive the equation $\frac{M}{l}=\frac{\sigma_{b}}{y}=\frac{E}{R}$ in bending stress of beams.
b) A beam 6 m long is simply supported at its end is carrying a point load " w " at its mid span. If the slope at the end is not to exceed 2 degrees, then calculate the deflection at the mid span.
c) Find the torque that a 75 mm diameter wooden shaft can resist if the permissible shear stress is 2 MPa .

M : Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	18%
ii)	Blooms Taxonomy Level -	34%
iii)	Blooms Taxonomy Level - 3\&4	48%

